

Yasunobu AKIYAMA, Tomomi KAWASAKI, and Masanori SAKAMOTO*
Meiji College of Pharmacy, 1-35-23, Nozawa, Setagaya-ku, Tokyo 154

Organocadmium reagents reacted with the cyano-function of ethyl cyanoformate in the presence of ZnCl_2 to afford the corresponding $\alpha\text{-keto}$ esters.

Although the addition of organometallic reagents to the cyano-function of ethyl cyanoformate (1) appeared of interest for synthesis of $\alpha\text{-keto}^1)$ and $\alpha\text{-dehydro-amino esters,}^2)$ such a reaction has not been known so far. Thus, Grignard reagents and organolithium compounds add to the ester-function of 1 rather than the cyano-function, affording the corresponding tertially alcohols or ethoxy carbonyl compounds. Recently, G. P. Axiotis bhas reported that triethoxyacetonitrile as protected form of 1 reacts with organolithium reagents to give $\alpha\text{-keto}$ esters. We have now found that organocadmium reagents (2a-e) react with 1 activated by using $2nCl_2^{\ 4}$ to give the corresponding $\alpha\text{-keto}$ esters (3a-e). In typical reaction, the solution of the freshly prepared cyclohexylcadmium

In typical reaction, the solution of the freshly prepared cyclohexylcadmium bromide $(2a)^{5}$ (30.5 mmol) in dry ether (66ml) was added slowly to the suspension of ethyl cyanoformate $(\underline{1})$ (30 mmol) and $2nCl_2$ (30 mmol) in dry ether (70 ml) at 0°C under argon. After addition, the mixture was stirred for 23 h at room temperature, quenched with 10% HCl aqueous solution (20 ml), and extracted with CH_2Cl_2 (70 ml). The extract was concentrated under reduced pressure to give a syrup, from which 66% yield of ethyl α -oxocyclohexaneacetate (3a) was obtained by silica-gel column chromatography (elution with benzene). It was confirmed by direct comparison of its physical and spectral data with those of the sample prepared by the procedure

$$\begin{array}{c} \text{RMgBr} \xrightarrow{\text{CdBr}_2} \left[\text{RCdBr} \right] \xrightarrow{1. \ \text{NCCO}_2\text{C}_2\text{H}_5(\underline{1}), \ \text{ZnCl}_2} \xrightarrow{\text{R-C-CO}_2\text{C}_2\text{H}_5} \\ \underline{2} & \text{aq.HCl} & 0 & \underline{3} \end{array}$$

Table 1. Yields and Physical Data of $\alpha ext{-Keto}$ Esters $3a ext{-e}$

Compd. No.	R	Yield(%) ^{a)}	Bp(°C)[mmHg]	Lit.	$v_{\text{max}}^{\text{CHC1}} \text{3 cm}^{-1}$	Mp(°C) of 2,4-DNPb)
3a	c-C ₆ H ₁₁	66	132-135[22]	132[20] ^{1d)}	1720	167-168
3b	c-C ₅ H ₉	44	102-105[17]		1720	153-154
3c	s-C ₄ H ₉	57	98-100[17]	***	1725	109-110
3d	i-C ₃ H ₇	24	105-110[14] ^{c)}	62[11] ^{1e)}	1740	179-179.5
3 e	C ₆ H ₅	31	127-130[5]	100-103[1] ^{1c)}	1740, 169	5 155-156

a) Isolated yield after purification by distillation. b) 2,4-Dinitrophenylhydrazone of $\underline{3}$; all 2,4-DNP gave satisfactory elemental analysis. c) Bath temperature are provided.

of L. M. Weinstock. 1c In a similar manner, other organocadmium bromides $(\underline{2b}-\underline{e})$ reacted with $\underline{1}$ to give the corresponding α -keto esters $(\underline{3b}-\underline{e})$ in moderate yields, respectively. The results are shown in Table 1. In contrast, phenylmagnesium bromide reacted with $\underline{1}$ in the presence of ZnCl_2 to obtain 13% yield of $\underline{3e}$, together with several unknown products. The result is explained that $\underline{1}$ activated by ZnCl_2 as acid-base complex tends to be decomposed by action of a strong base such as Grignard reagent compared with organocadmium reagent (2). 6

In the absence of $2nCl_2$, the reaction of 2e with 1 gave a mixture of 3e and ethyl benzoate in 17% yield and in a ratio of ca. 3:2,7) whereas one of Grignard reagents affords tertially alcohols. The differences between the reactivities of 2 and Grignard reagents towards 1 is explained by the tendency that soft nucleophiles such as mercaptanes add to the cyano-function of 1,8) while hard nucleophiles such as amines to the ester-function. Indeed, organocadmium reagents (2) is softer than Grignard reagents, and attacked at the carbon of the cyano-function to give 3.

Furthermore, instead of hydrolysis, the reaction mixture obtained from activated $\underline{1}$ and $\underline{2a}$ was allowed to treat with benzoyl cyanide for 6 h at room temperature to give ethyl 1-(N-benzoylamino)-1-cyclohexylideneacetate $(\underline{4})$ in 20% yield. The structure was decided by direct comparison of its physical and spectral data with those of the sample prepared by the procedure of C. Shin. 2c

References

- 1) a) E. D. Thorsett, Tetrahedron Lett., 1982, 1875; b) G. P. Axiotis, ibid., 1981, 1509; c) L. M. Weinstock, R. B. Currie, and A. V. Lovell, Synth. Commun., 11, 943 (1981); d) E. Adlerova, P. Vejdekova, and M. Protiva, Collect. Czech. Chem. Commun., 29, 97 (1964); e) W. Boureault, C. R. Acad. Sci., 132, 417 (1901); see also references therein.
- 2) a) For a review, see C. Shin, Yuki Gosei Kagaku Kyokai Shi, 37, 830 (1979);
 b) L. Somekh and A. Shanzer, J. Org. Chem., 48, 907 (1983);
 c) C. Shin, K. Sato,
 A. Ohtsuka, K. Mikami, and J. Yoshimura, Bull. Chem. Soc. Jpn., 46, 3876 (1975).
- 3) H. Finger and R. Gaul, J. Prakt. Chem., <u>111</u>, 54 (1925); P. Bruylants, Bull. Soc. Chim. Belg., <u>1924</u>, 529.
- 4) Selective activation of the cyano-function of $\underline{1}$ with ZnCl_2 is shown in the reaction of active methylene compounds, T. Iimori, Y. Nii, T. Izawa, S. Kobayashi and M. Ohno, $\operatorname{Tetrahedron\ Lett.}$, $\underline{1979}$, 2525.
- 5) P. R. Jones, P. D. Sherman, and K. Schwarzenberg, J. Organomet. Chem., <u>10</u>, 521 (1967); H. Gilman and J. F. Nelson, Recl. Trav. Chim. Pays-Bas, <u>55</u>, 518 (1936).
- 6) P. R. Jones and P. J. Desio, Chem. Rev., 78, 491 (1978).
- 7) Determined by nuclear magnetic resonance spectroscopy.
- 8) G. Statzinger, Justus Liebigs Ann. Chem., 1978, 473.
- 9) L. A. Carpino, J. Am. Chem. Soc., 82, 2725 (1960).
- 10) T. -L. Ho, "Hard and Soft Acids and Bases Principle in Organic Chemistry," Academic Press, New york, San Francisco, London (1977).

(Received June 1, 1983)